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1. Introduction 

The fiber optic nerve system of the Brillouin 

optical correlation-domain analysis (BOCDA) [1–3] 

or reflectometry (BOCDR) [4–6] takes use of the 

correlation-domain continuous-wave technique, 

which is more advantageous than the Brillouin 

optical time-domain analysis (BOTDA) [7, 8] and 

reflectometry (BOTDR) [9, 10]. Fiber optic nerve 

systems (BOCDA and BOCDR) have been 

theoretically investigated and experimentally 

realized to provide outstanding performances in 

diagnosis of fully-distributed strain or temperature 

disturbances with an extremely-high spatial 

resolution of from centimeters [1, 2, 4, 5] to several 

millimeters [3, 6] along the whole fiber under test 

(FUT). Regardless of the ability of how short 

segment can be diagnosed, either BOCDA/R or 

BOTDA/R via measurement of a single parameter 

(i.e., Brillouin frequency shift, BFS) is unable to 

distinguish the response to strain from the response 

to temperature [11–13]. 

In this paper, we demonstrate the research trends 
of distributed discrimination of strain and 
temperature by use of an optical fiber based on fiber 

optic nerve systems. Firstly, the preliminary method 
based on multiple acoustic modes in a specially 
designed fiber is introduced. Secondly, the principle 

and experimental demonstration of the complete 
discrimination of strain and temperature based on 
the Brillouin dynamic grating (BDG) in a 

polarization maintaining are presented. Finally, the 
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development of distributed discrimination of strain 
and temperature is reviewed. 

2. Preliminary method 

2.1 Mechanism of the Brillouin-based sensing 
technique 

Brillouin scattering is a photon-phonon 

interaction similar to the case of Raman scattering 

[14]. Brillouin scattering is due to the fact that 

annihilation of a pump photon creates a Stokes 

photon and a phonon simultaneously. The phonon is 

the vibrational modes of atoms, which is also called 

a propagation density wave or an acoustic phonon. 

The newly-generated photon suffers a down-shifted 

frequency from the pump photon due to the Doppler 

shift associated with the fact that the generated 

acoustic phonons move forward. The down-shifted 

frequency is called the Brillouin frequency shift 

(BFS, B) given by 

eff2
 B a

n
V


              (1) 

where  is the optical wavelength, neff the effective 

refractive index, and Va the effective acoustic 

velocity [14]. The BFS in silica optical fibers is   

10 GHz – 11 GHz in the 1550-nm region, as shown 

in Fig. 1 [13]. 
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Fig. 1 Measured (symbolic points) and Lorenzian fitted 

(solid curves) BGS of Fiber-A, Fiber-B2, Fiber-C, and Fiber-D 

with different dopant concentrations and different-diameter 

cores [13] (copyright @ JLT). 

As depicted in Fig. 2, it is clarified that the BFS 

change (B) has a good linear dependence on strain 

() and/or temperature (T) [11–13], which can be 

expressed by 
T

B C C T
                (2) 

where C

 (=0.04 MHz/– 0.05 MHz/) and C

 

(=0.9 MHz/℃–1.1 MHz/℃) denote the strain and 

temperature coefficients. The relation given in (2) is 

the basic mechanism of Brillouin distributed sensing 

techniques [1–10], however, gives a challenge how 

to discriminate their responses by use of a 

single-length optical fiber. 

    

0 2 4 6 8 10 12 14 15
-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

LP
01

 mode

L
01

 mode

L
02

 mode

L
03

 mode

L
04

 mode

refractive-index profile

LP01

L01

L04

L03 L02

ind ex-profi le

r (m)

E
x

, 
u z

(a
.u

.)


n
(%

)

10.8 10.9 11 11.1 11.2
10

-6

10
-4

10
-2

10
0

L
01

L
02 L

03 L
04

Total BGS

(a)

(b)

0 2 4 6 8 10 12 14 15
-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

LP
01

 mode

L
01

 mode

L
02

 mode

L
03

 mode

L
04

 mode

refractive-index profile

LP01

L01

L04

L03 L02

ind ex-profi le

0 2 4 6 8 10 12 14 15
-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

LP
01

 mode

L
01

 mode

L
02

 mode

L
03

 mode

L
04

 mode

refractive-index profile

LP01

L01

L04

L03 L02

ind ex-profi le

r (m)

E
x

, 
u z

(a
.u

.)


n
(%

)

10.8 10.9 11 11.1 11.2
10

-6

10
-4

10
-2

10
0

L
01

L
02 L

03 L
04

Total BGS

(a)

(b)

10-4

10
-3

10
-2

10
-1

10
0

SMF
PMF-x
PMF-y

27 MHz

(c)

1
0.8
0.6
0.4
0.2

0
0.2
0.4
0.6
0.8
1.0

0 2 4 6 8 10 12 14 15
r (m) 

E
x,

u z
 (a

.u
.)

 
n

 (
%

) 
100

102

104

106

10.8 10.9 11.0 11.1 11.2
Frequency (GHz) 

100

102

101

103

104

10.8 10.9 11.0 11.1 11.2
Frequency (GHz) 

B
ri

ll
ou

in
 g

ai
n 

[(
m
W

)
1 ] 

LP01L01

L02L03

L04

Index-profile 

L01 

L02 L03 L04

Total BGS

27MHz

(a)

(b)

(c) 

SMF
PMF-x
PMF-y

 
Fig. 2 Simulation results: (a) evaluated field distributions of 

the optical LP01 mode and four longitudinal acoustic L0l modes 

in the SMF, (b) total BGS (solid curve) composed of four L0l 

modes induced the BGS (dashed curves), and (c) experimentally 

measured result [18] (copyright @ IEEE PTL). 

2.2 Multiple peaks in a specially-designed optical 
fiber 

A preliminary method is to use a 

specially-designed fiber with multiple Brillouin 

peaks that exhibit different frequency variations in 

temperature and strain [15–17]. As shown in Fig. 2 
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[18], there are four resonance peaks of the Brillouin 

gain spectrum (BGS) even in a standard single mode 

optical fiber (SMF). This is because the acoustic 

wavenumber is far larger than the optical one [19] so 

that four acoustic modes can simultaneously exist in 

an SMF. 

The BGS in a w-shaped high-delta optical fiber 
with the F-doped depressed inner cladding (F-HDF) 
has four well-separated peaks, as shown in Fig. 3 

[17]. The first-order and the fourth-order (see Fig. 4) 
are more suitable for the discrimination of strain and 
temperature since they are attributed to two separate 

layers of the GeO2-doped core and F-doped inner 
cladding [19–21]. 

Although the preliminary method based on a 

specially-designed fiber [15–17] is a frequency- 
based measurement technique prior to the 
power-based one [22], it is still ill-conditioned and 

physically limited due to the correlated relationship 
among multiple peaks. 
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Fig. 3 Typical BGS measured at 25 ℃ in the loose state 

(dotted curve) compared with the simulated BGS (solid curve) 

in the F-HDF: bottom axis – measured BGS; top axis – 

simulated BGS [17] (copyright @ OSA OL). 
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Fig. 4 Resonance frequencies of different acoustic modes as 

a function of (a) strain and (b) temperature: solid lines – 

least-squares linearly fits to data. [17] (copyright @ OSA OL). 

3. Complete discrimination of strain and 
temperature 

3.1 Principle 

A Panda-type polarization-maintaining fiber 

(PMF), which has been widely used for optical fiber 

communications [23] or fiber-optic sensors [24], is 

composed of two B2O3-doped-silica stress-applying 

parts that are inserted in a pure-silica cladding and 

symmetrically placed beside a GeO2-doped-silica 

core [see Figs. 5(a) and 5(b)]. Due to the difference 

in thermal contraction between B2O3-doped silica 

and pure silica, two-dimensional stress is raised and 

stored into the core during the drawing process in 

fiber fabrication [23]. The residual stress makes the 

refractive index along x-axis (nx) slightly greater 

than that along y-axis (ny). Consequently, a 

lightwave linearly polarized along x-axis (so called 

slow axis) propagates slower than that along y-axis 

(fast axis). The difference between nx and ny (i.e., 

birefringence B = nx – ny) is small (e.g., B =   

~3.3× 10–4 for the fiber used here) but large enough 

so that lightwaves linearly-polarized along either x- 

or y-axis can propagate through the fiber while 

maintaining their polarization states in despite of the 

external disturbance. 
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Fig. 5 Schematic diagram of the Panda-type PMF: (a) side 

view, (b) cross section, and (c) principle of the BDG generation 

and readout. 

As schematically shown in Fig. 5(c), two 

lightwaves, one is called pump with the optical 

frequency fx and the other called probe with the 
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frequency fx’, counter-propagate through the fiber; 

the pump and the probe are linearly polarized along 

x-axis, for instance. When the frequency difference 

between the pump and probe fx – fx’ equals the BFS 

given by (1), SBS occurs in which an acoustic wave 

(phonons) propagating at the velocity Va is 

significantly generated. The acoustic wave stretches 

or compresses the fiber core longitudinally and thus 

modulates periodically the refractive index. 

Consequently, a Bragg grating moving forward at Va 

is formed. Because the acoustic wave as a 

longitudinal wave exhibits no dependence on 

transverse polarization [18], the y-polarized readout 

light can also be strongly diffracted by the acoustic 

grating generated by the x-polarized pump and probe, 

as long as the frequency fy of the y-polarized readout 

light satisfies a phase matching condition that 

requires fy to deviate from that of the x-polarized 

pump (fx) by a birefringence-determined frequency 

deviation [25, 26] 
– · /yx y x x xf f f f B n  .         (3) 

The residual tensile stress (xy) determining the 

Panda-type PMF’s birefringence changes with the 

ambient temperature (Ti): 

3 2 fic  (  ) ( )xy iB k T T     – –       (4) 

where Tfic denotes the fictive temperature (e.g., 

850 ℃ ) of silica glass, 3 (2) is the thermal 

coefficient of B2O3-doped-silica stress-applying 

parts (pure-silica cladding), and k is a constant 

determined by the geometrical location of 

stress-applying parts in the fiber [27]. When 

temperature increases (T = Ti – 25 > 0), the residual 

stress is released, and thus the birefringence 

decreases as 

0

fic 25
T T

B B
T


   


           (5) 

where B0 is the intrinsic birefringence at room 

temperature (Ti = 25 ℃). In contrast, when an axial 

strain  is applied to the fiber, additional stress is 

generated because the stress-applying parts and the 

cladding contract in the lateral direction differently 

due to their different Poisson’s ratios (3>2) [27], 

and the birefringence is enlarged with applied strain 

as  

3 2
0

3 2 fic

( )

( )( 25)
B B

T
  


 


     

 
.     (6) 

Consequently, the birefringence-determined 
frequency deviation fyx varies linearly with a 

temperature increase and the applied strain, i.e., 

0
T

yx yx yx f ff f f C C T              (7) 

where fyx0 is the frequency deviation [see (3)] at   

25 ℃ and in the loose condition, and Cf
 and Cf

 are 

the strain coefficient and the temperature coefficient 

of the frequency deviation, respectively. According 

to (4)–(6), one can deduce the strain coefficient 

3 2
0

3 2 fic

( )

( )( 25)f yxC f
T

  
 


  

 
       (8) 

and temperature coefficient 

0

fic

1

( 25)
T
f yxC f

T
  


.          (9) 

According to (8) and (9), one knows that the 
strain coefficient fC  is positive while the 
temperature coefficient T

fC  is negative, which 

means that the responses of the 
birefringence-determined frequency deviation to 
strain and temperature are in opposite directions. In 

contrast, vC  and T
vC  in (2) are both positive 

values because the Young’s modulus of silica is 
nonlinearly increased by strain and temperature [13]. 

By solving (2) and (7) jointly, we get the strain 

() and temperature () as [26] 

1
T T

Bf

T T
yxff f

C C

fC CT C C C C


  
 

     
              

.(10) 

In physics, the two phenomena/quantities, i.e., 

the BFS [ (2)] and the birefringence of the fiber [see 

(7)], are inherently independent. In mathematics, 
T
fC  has a sign opposite to those of other three 

coefficients, so that the denominator ( vC · T
fC  

– T
vC · fC ) in (10) has the significant value. 

Therefore, a complete discrimination of strain and 

temperature based on simultaneous measurement of 

the two quantities can be ensured. 
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3.2 Experimental demonstration 

The experimental setup is shown in Fig. 6. Part A 

in Fig. 6 is a typical pump-probe scheme to measure 

the BGS (and thus BFS B) [7], except that a set of 

polarization-maintaining (PM) components 

(polarizer, PM isolator, PM circulator, and 

polarization beam splitter/combiner) are introduced 

to ensure the pump and probe lightwaves polarized 

along x-axis. The light source is a 1549-nm 

distributed-feedback laser diode (DFB-LD1). The 

intensities of the pump and the probe incident to a 

31-meter-length fiber under test are amplified with 

erbium-doped fiber amplifiers to about 140 mW and 

about 1 mW, respectively. The frequency of the 

probe is down-shifted from that of the pump for  

10.8 GHz to 11.1 GHz with a single-sideband 

electro-optic modulator (SSBM) controlled by a 

microwave synthesizer, so the BGS is obtained as 

shown in Fig. 7(a), which depicts the BGS of the 

31-meter-length FUT. The synchronous detection 

scheme was employed by chopping the pump with 

the electro-optic modulator (EOM) and detecting 

with a lock-in amplifier (LIA1) to ensure high 

precision in characterization of the BFS B. A 

reproducible accuracy of 0.1 MHz was confirmed 

[17]. 
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Fig. 6 Configuration of the measurement system: Part A – 

pump-probe scheme to measure the Brillouin gain spectrum and 

thus the Brillouin frequency shift along x-axis; Part B – 

detection of the diffraction spectrum of the acoustic grating in 

SBS to y-polarized readout light [26] (copyright@OSA OE). 

0

2

4

6

8

D
iff

ra
ct

ed
 p

o
w

e
r 

(a
.u

.)  Expeirmental data
 Gaussian fitting
 Lorentzian fitting

~320 MHz

 Experimental data
 Lorentzian fitting

0

2

4

6

8

0 

2 

4 

6 

8 

10.80 10.90 11.00 11.10 41 42 43 44 45 46 47
Pump-probe frequency offset (GHz) Pump-probe frequency offset (GHz)

(a) (b) 

B
ri

ll
ou

in
 g

ai
n 

(a
.u

.)
 

D
if

fr
ac

te
d 

po
w

er
 (

a.
u.

) 

～320MHz 

Experimantal data
Lorentzian fitting

Experimantal data
Gaussian fitting 
Lorentzian fitting

 
Fig. 7 Measured Brillouin gain spectrum (a) and the 

diffraction spectrum of the dynamic acoustic grating induced by 

SBS to y-polarized readout light (b) in a 31-meter-length fiber at 

room temperature and in the loose condition: circles denote 

experimental data, and the solid (dashed) curve corresponds to 

Gaussian (Lorentzian) fitting to experimental data [26] 

(copyright@OSA OE). 

Part B in Fig. 6 is for precisely measuring the 

BDG’s diffraction spectrum to y-polarized readout 

light (and thus the birefringence-determined 

frequency deviation fyx). The readout light is 

generated from the other laser diode DFB-LD2 

(central wavelength: ~ 1549 nm), whose optical 

frequency is ramp-swept by linearly modulating its 

dc injection current. Through the polarization beam 

splitter/combiner after a PM circulator, the linearly 

polarized readout light (intensity: ~ 63 mW) is 

launched into the FUT with its polarization along 

the fiber’s y-axis. At first, the acoustic phonons in 

SBS (and thus the dynamic acoustic grating) are 

maximized by fixing the microwave frequency to 

the single-sideband modulator at the BFS B 

obtained above. Under this condition, the readout 

light is strongly diffracted by the acoustic grating. 

The diffracted light is detected synchronously by 

using the other lock-in amplifier (LIA2) and 

recorded as a function of the ramp-swept optical 

frequency of DFB-LD2. In this way, the diffraction 

spectrum of the acoustic grating to y-polarized 

readout light is obtained. For measuring the 

diffraction spectrum, a tunable optical band-pass 

filter with the about 20-GHz bandwidth is used to 

eliminate the leakage of the x-polarized probe and 

pump. The diffraction spectrum of the dynamic 

acoustic grating established over the 
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31-meter-length FUT measured at room temperature 

is plotted in Fig. 7(b), showing that the diffraction 

spectrum has a profile Gaussian-like rather than 

Lorentzian. By least-squares Gaussian fitting to the 

experimental data in Fig. 7(b), we get the 

birefringence-determined frequency deviation fyx = 

43.8765 GHz representing the fiber’s birefringence 

B = 3.27773 × 10–4, and the full width at the half 

magnitude (FWHM) as about 320 MHz. The 

repeatability test result validates that the frequency 

deviation can be measured within a standard error of 

fyx = 4 MHz corresponding to a reproducible B = 

3×10–8. Comparably, a simply switching the SBS 

measurement along x-axis and y-axis [28] can only 

give the birefringence accuracy around 10–5, which 

is insufficient for characterizing strain and 

temperature responses of the birefringence and for 

strain and temperature discrimination. 

The BGS and the BDG’s diffraction spectrum 

were measured and used to evaluate the B and fyx 

when different strains were applied to the 

31-meter-length FUT. As summarized in Fig. 8, the  
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(b)  
Fig. 8 Measured strain and temperature coefficients:      

(a) strain dependence and (b) temperature dependence [circles 

denote the experimental results for the Brillouin frequency shift 

(B) in left vertical axes, and triangles correspond to the 

birefringence-determined frequency deviation (fyx) in right 

vertical axes, respectively] [26] (copyright@OSA OE). 

two quantities shift in the same way with the applied 

strain but in the opposite directions with the 

temperature. All dependence shows the excellent 

linearity; thus by linear fitting, we get the strain 

coefficient and the temperature coefficient of vC = 

+0.03938 MHz/and T
vC = +1.0580 MHz/℃ for 

the BFS B and fC = +0.8995 MHz/and T
fC = 

–55.8134 MHz/℃ for the frequency deviation fyx, 

respectively. Using our measured result fyx0 =  

43.875 GHz [see Fig. 7(b)] together with Chiang   

et al.’s result [27] of (3–2)/[(3–2) (Tfic–25)] = 

24.3×10–6
 , the coefficients in the fiber are 

deduced approximately to be fC  = +1.069 MHz/ 
and T

fC = –54.8 MHz/℃ according to (8) and (9), 

respectively. It means that the measured coefficients 

for the frequency deviation fyx match well with our 

theoretical estimations. 

Putting above strain/temperature coefficients 

into (10) and taking the standard errors of our 

measurement system (=0.1MHz and fyx 

MHz, respectively) into account, the accuracy of 

the discrimination is given as high as 

and ℃. This high 

accuracy proves the ability of completely 

discriminative sensing of the strain and temperature. 

When a set of strain and temperature (, ) was 

initialized as (0, 4.9 ℃) or (939, 0 ℃) in Fig. 5, 

for example, two frequency changes ( and fyx) 

were measured as (5.1 MHz, –276 MHz) or    

(37.1 MHz, 849 MHz). According to (3), the strain 

and the temperature values are calculated as (–2.3 , 
4.907 ℃) or (942.6 , –0.0197 ℃), respectively. 

They differ from the initialized values with errors as 

low as (–2.3 , 0.007 ℃) or (3.6 , –0.020 ℃). 

This example also verifies the complete 

discrimination ability of the proposed method. 

4. Distributed discrimination of strain 
and temperature 

4.1 Proof-of-concept 

For distributed discrimination of strain and 
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temperature, the localized BDG generation and 
readout in the PMF should be firstly proved to be 
effective. A correlation-based continuous-wave 
technique of the BOCDA system was used for 

random access [29], and a pulse-based time-domain 
technique was also employed for continuous access 
[30]. It was found that the generation and readout 

optical waves in the BOCDA system should be 
synchronously frequency-modulated because of the 
dispersion properties of all four waves (see Fig. 9) 

[31], including writing light waves (pump and 
probe), reading light wave (readout), and acoustic 
wave (dynamic grating as well). Consequently, the 

local BGS and BDG diffraction grating could be 
correctly identified, as schematically shown in Fig. 

10 [29]. 
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Fig. 9 Dispersion properties of all pump, probe and readout 

waves together with the acoustic wave (Brillouin dynamic 

grating) [31] (copyright@OSA OE). 

 
Fig. 10 Schematic of distributed measurement of DGS: (a) 

beat power spectrum distribution S(z) near the correlation peak: 

the local dynamic grating spectrum (DGS) when the optical 

frequency of the readout wave is not modulated (b) or 

modulated synchronously to the modulation to pump light (c): 

the top plots show the measured DGS for (b) or for (c) when the 

correlation peak is localized in a heated segment [29] 

(copyright@OSA OL). 
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where fm is the modulation frequency of the lasers. 

However, their spatial resolutions are separately 

determined by the BGS linewidth (B) and the 

BDG bandwidth (fyx) as follows [29]: 
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where f is the modulation amplitude of the lasers. 

Figure 11 depicts the experimental configuration 

of the distributed generation and readout of the BGS 

and BDG based on the correlation-based 

continuous-wave technique [29]. The difference 

from Fig. 6 is the introduction of the synchronous 

frequency modulation to the lasers. The 

measurement range of the distributed BGS and BDG 

is commonly given by the neighboring correlation 

peaks of the BOCDA system [1, 29]. 
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Fig. 11 Experimental configuration for the distributed 

generating and measuring the BGS and DGS in a PMF 

(copyright@OSA OL). 

The proof-of-concept distributed measurement 

ability with the 1.2-m spatial resolution was verified 

as demonstrated in Fig. 12. Four heated segments 

cascaded along the PMF sample were prepared [see 

Fig. 12(a)]. The measured BGS and BDG 

distribution in the first two segments are shown in 

Fig. 12(b); the characterized B and fyx with opposite 

responses to the increased temperature are clearly 

illustrated in Fig. 12(c). 
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Fig. 12 Distributed measurement results: (a) prepared PMF 

sample, (b) examples of 3D distribution of measured BGS and 

DGS from 2 m to 9 m when the heater is turned on, and      

(c) summarization of the detected BFS B (upper) or frequency 

deviation fyx (lower) and their temperature-induced changes near 

the heated segments [29] (copyright@OSA OL). 

4.2 Two-laser-based scheme of distributed 
discrimination 

By use of the experimental setup shown in Fig. 

11, the two-laser-based scheme of distributed 

discrimination of strain and temperature was 

successfully demonstrated with the 10-cm spatial 

resolution [32]. The fm = 12.429 MHz determines the 

nominal measurement range as dm = 8.35 m 

according to (11). For local BGS and BDG 

measurement, fB = 1.5 GHz and fD = 10 GHz 

correspond to the nominal spatial resolution zB =  

5 cmandzD = 8 cm [see (12) and (13)], 

respectively. 

To validate the feasibility of distributed 

discrimination of strain and temperature, we 

constructed an 8-m PMF sample consisting of nine 

(A–I) cascaded fiber portions of 10 cm – 16 cm in 

length, which is illustrated in Fig. 13(a). The A, C, G, 

and I portions were loosely laid at 25.1 ℃ for 

reference, while the B, D, F, and H portions were 

loosely inserted into a temperature-controlled water 

bath with the 0.1-℃ accuracy. The E portion was 

also inserted into the water bath and glued to a set of 

translation stages to load strain. The measured 

distribution of the changes in B and fyx are 

summarized in Figs. 13(b) and 13(c), respectively. 

Referred to the characterized coefficients in Fig. 8 

and the cross-sensitivity matrix in (10), the deducted 

distributions of strain and temperature along the 

fiber are depicted in Figs. 13(d) and 13(e), which 

clearly shows the feasibility of distributed 

discrimination of strain and temperature. 
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Fig. 13 PMF sample comprising 9 cascaded strained and 

heated fiber portions (dashed box) with 10 cm–16 cm in length 

(a), distribution of the change in the Brillouin frequency shift  

(b), the frequency deviation fyx, and distributed discrimination of 

strain (d) and temperature (e) [32] (copyright@IEEE PTL). 

4.3 One-laser-based scheme of distributed 
discrimination 

Superior to all BDG generation/detection 

schemes using multiple individual laser sources [29, 

30, 32, 33], the one-laser-based new scheme [31] 

can generate the coherent light waves to write the 

BDG (pump and probe waves) and to detect BDG 
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(readout wave) by use of a sideband-generation 

technique. The new scheme overcomes the relative 

frequency fluctuations among multiple waves and 

ensures a much higher precision than previous 

schemes in the measured BGS and BDG. It can also 

provide a higher speed in the measurement of the 

BGS and BDG since the time-consuming averaging 

process is not necessary. 

Figure 14 shows the experimental setup of 

one-laser-based generation and detection of the 

BDG in a PMF. A 1549-nm distributed-feedback 

laser diode (DFB-LD) serves as the laser source. A 

40-GHz intensity modulator (IM2) driven by a radio 

frequency synthesizer (RF2 at RF2) with a proper dc 

bias is used to generate double sidebands with the 

suppressed carrier (DSB-SC). The output of IM2 is 

launched into a fiber Bragg grating (FBG) through a 

circulator. The light reflected from the FBG, after 

further filtered by a tunable band-pass filter (TBF1), 

is used as the light source for pump and probe waves 

to write the BDG. After amplified by an erbium- 

doped fiber amplifier (EDFA1), the light is divided 

into the pump and probe waves. The frequency of 

the probe wave is down-shifted by a single-sideband 

modulator (SSBM) driven by another synthesizer 

(RF1 at RF1); the pump is chopped by IM1 for 

lock-in detection. The pump and probe waves are 

linearly polarized along the x-axis (slow-axis) of the 

PMF, which is used as the sensing medium. On the 

other hand, the light passing through the FBG is 

used as the readout wave to interrogate the BDG. 

The readout wave is y-polarized and launched into 

the PMF in the same direction as the pump wave. 

As shown in Fig. 15, the fyx measured in this 

one-laser-based scheme shows high stability and 

accuracy (several MHz), while that obtained by the 

two-laser scheme suffers very high fluctuation 

(several hundreds of MHz). Compared to the 

previous two-laser scheme (see Fig. 11), the 

one-laser-based scheme demonstrated here has the 

similar spatial resolution (~10 cm) and measurement 

range (~5 m), but has several advantages including 

the faster measurement speed without 

time-consuming averaging, simpler measurement 

without sophisticated synchronization, and higher 

accuracy. 
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Fig. 14 Experimental setup of one-laser-based Brillouin dynamic grating generation/detection and discrimination of strain and 

temperature based on BOCDA (the light from DFB-LD is intensity-modulated to generate two sidebands with suppressed carrier) [31] 

(copyright@OSA OE). 
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Fig. 15 Comparison of the BDG measurement accuracy 

between the one-laser scheme and two-laser scheme [31] 

(copyright@OSA OE). 

Figure 16 summarizes the experimental results 

when the fiber is heated from 25 ℃ to 30 ℃ or/and 

the strain (= 2000 ) is applied both at the 

location of 3.1 m. It is clear that the imposed strain 

increases both the B and fyx, while the heating has a 

contribution to the fyx opposite to that to the B. By 

referring to the strain and temperature coefficients of 

the B and fyx [see (10)], we evaluated the 

distribution of the temperature and strain along the 
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fiber. The results summarized in Figs. 16(c) and 

16(d) match well with the setting situation. 
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Fig. 16 Measured distribution of Brillouin frequency B (a) 

and birefringence-determined frequency deviation fyx (b), 

discriminated distribution of strain (c) and temperature (d): solid 

lines (Status 1): T = 25 ℃, = 0 ; squares (Status 2): T = 25 ℃, 

= 2000 ; circles (Status 3): T = 30 ℃, = 2000  [31] 

(copyright@OSA OE). 

4.4 Range elongation of one-laser-based scheme 

Due to the nature of the correlation-domain 

continuous-wave technique in the BOCDA system, 

the spatial resolutions of the distributed BGS and 

BDG measurement are in trade-off relation with the 

measurement range [see (11)–(13)]. It results in a 

limited range of the distributed discrimination of 

strain and temperature. To overcome it, the temporal 

gating [34] or the dual modulation method [35] is 

introduced into the one-laser-based discriminative 

sensing system. 

The temporal gating method can be easily 

implemented by use of a pulse modulation of the 

RF2 that drives the IM2 in Fig. 14. The pulse 

modulation has 1/N duty ratio and 1/N repetition 

frequency compared to that of the LD frequency 

modulation. The pump-probe interaction occurs only 

at the positions where the counter propagating probe 

and pump pulses overlap [36]. As a result, the range 

given in (11) can be elongated by N times. In the 

experiment, the spatial resolution was set at 50 cm; 

the range increased by 20 times (from 25 m to 500 m) 

[36]. 

A fiber under test of a 500-m-length fiber 

composed of two types of the PMF (A and B) is 

shown in Fig. 17(a). The fiber is emerged in a  
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Fig. 17 Experimental results: (a) configuration of the fiber 

under test, and discriminative distributed measurements of strain 

(b) and temperature (c) [35] (copyright@IEEE PTL). 
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temperature controlled water bath for temperature 

control or pulled with a movable stage to load strain. 

The distributed discrimination of strain and 

temperature along the fiber is illustrated in Figs. 

17(b) and 17(c), which clearly show the feasibility 

of the elongated measurement range. 

5. Conclusions 

We have demonstrated the recent research 

progress on the discrimination of strain and 

temperature by use of a single-length optical fiber. 

After a brief introduction of the preliminary method 

based on a specially-designed optical fiber, the novel 

method based on the BDG in a PMF for complete 

discrimination of strain and temperature is presented. 

The fundamental principles as well as two different 

schemes of distributed discrimination of strain and 

temperature are overviewed. Thanks to the inherent 

coherence of the writing and reading waves of the 

BDG, the one-laser-based scheme has more features 

of the high speed and high accuracy, which are also 

easily extended with the assistance of the temporal 

gating method or the dual modulation method. The 

next research efforts will focus on the improvement 

in the sensing speed along the entire fiber [37, 38] 

and the simplification of the entire fiber-optic nerve 

system towards the real industry application in the 

smart materials and smart structure. 
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